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We present a method to measure the adiabatic index of a material under shock compression by X-ray Thom-
son Scattering. A Beryllium target is symmetrically compressed by two counterpropagating shock waves that
collide in the target center, producing super dense states of matter of up to 6 fold compression. We measure
the density before and after the shock collision and solve the Hugoniot relations for colliding shocks to infer
the adiabatic index. Our results indicate that the adiabatic index stays rather high even in the high compression
regime. This agrees with a linear scaling model taken from the SESAME equation of state and shows that the
adiabatic index becomes significantly different from the ratio of heat capacities in this strongly coupled plasma.
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1 Introduction

Measurement of static and dynamic properties of shock compressed matter has become an important technique to
characterize materials under extreme conditions of pressure, density, and temperature, relevant for astrophysical
applications and inertial confinement fusion. X-ray Thomson scattering [1] was demonstrated to provide accurate
measurements of the electron density, electron temperature, ionization and ionic structure for a wide variety of
isochorically heated, and shock-compressed materials. Beryllium has received special attention as a candidate
ablator material for inertial confinement fusion capsules in the indirect drive scheme [2].

Of particular interest to equation of state research are the adiabatic exponents. Adiabatic exponents char-
acterise isentropic changes (entropy S = const.) in the thermodynamic state of a system with the general
equation of state f(p, ρ, T ) = 0 [3], such a shock compression. Correspondingly, there are three adiabatic
indices, γ1 = (∂ ln p/∂ ln ρ)S , also called the sound speed gamma, γ2/γ2 − 1 = (∂ ln p/∂ lnT )S , and γ3 =
1+(∂ lnT/∂ ln ρ)S . For shock wave applications, it is useful to introduce the shock gamma γsh = 1+p/ρε, with
the internal energy density ε. In general, the adiabatic exponents and the shock gamma themselves depend on
pressure, temperature, and density, and are not equal to each other. Except for the perfect gas of non-interacting
particles obeying Maxwell-Boltzmann statistics, we have γ1 = γ2 = γ3 = γsh = cp/cv , the ratio of heat ca-
pacities at constant pressure and volume, respectively. E.g. for an ideal Fermi gas of non-interacting quantum
particles, this is no longer true, as the heat capacity ratio is (cp/cv)FG = 1, whereas in the classical monoatomic
gas (cp/cv)cl = 5/3.

In this paper, we describe a method to determine the shock gamma as a function of density at ultrahigh
compression ratios exceeding the single shock compression limit ρ/ρ0 = (γsh + 1)/ (γsh − 1) by measuring the
density before and after the collision of two equal shock waves. For this special setup, one can solve the Hugoniot
relations between pressure, shock velocity, and mass density using that the material velocity vanishes at the shock
front interface at the moment of shock collision.

The paper is organized as follows: In the following section we will briefly outline the derivation of the Hugo-
niot relations for colliding shock waves and show how the shock gamma can be determined if the compression
ratios before and after collision are measured. In Sec. 3 we describe the experiment and discuss the X-Ray
Thomson Scattering results for electron density, temperature, and ionization. Results for the shock gamma are

∗ Corresponding author E-mail: fortmann1@llnl.gov, Phone: +1 925 423 0152

Copyright line will be provided by the publisher
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presented in Sec. 4 and Sec. 5 discusses effects of the density dependence of γsh on the maximum single shock
compressibility compared to models that assume a constant γ.

2 Shock wave kinematics with density dependent γ

2.1 Single planar shock waves

The propagation of a planar shock front through matter is commonly described by the Hugoniot relations [4], that
relate the conditions before and after the shock front to the shock front velocity U . The Hugoniot relations are
derived from the conservation of mass, momentum, and energy in a small volume that extends across the shock
front, and which in the reference frame of the shock front read

u0ρ0 = u1ρ1 , (1a)

u20ρ0 + p0 = u21ρ1 + p1 , (1b)

u20ρ0 + ρ0ε0 + p0 = u21ρ1 + ρ1ε1 + p1 . (1c)

Here, ui = vi − U are the particle velocities with respect to the shock front, pi, ρi, εi are pressure, mass density,
and energy density, respectively, and index 0 denotes conditions ahead of the shock front, i.e in the uncompressed
material, index 1 denotes the conditions in the compressed material, behind the shock front. After some algebra,
the Hugoniot relation is established,

ε0 − ε1 =
1

2
(p0 + p1) (1/ρ1 − 1/ρ0) , (2)

We replace the energy densities ε0, ε1 by

εi =
pi

(γi − 1) ρi
, i = 0, 1. (3)

Here and in the following, γ = γsh is the shock gamma if not stated otherwise. The resulting equation

p0
(γ0 − 1) ρ0

− p1
(γ1 − 1) ρ1

=
1

2
(p0 + p1) (1/ρ1 − 1/ρ0) , (4)

is solved for the compression ratio x01 = ρ1/ρ0 as a function of the shock strength z01 = (p1 − p0)/p0,

x01 =
1 + (1 + z01)

γ1+1
γ1−1

1 + z01 +
γ0+1
γ0−1

. (5)

For a strong shock p1 � p0, z01 � 1, one immediately finds the well known result

x01 =
γ1 + 1

γ1 − 1
. (6)

Note that the strong shock compression depends only on the equation of state of the compressed material repre-
sented by γ1.

For later use, we solve Eq. (5) for the shock strength,

zij = 2
γj − xijγi γj−1

γi−1

xj (γj − 1)− γj − 1
(7)
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2.2 Colliding Shock waves

Upon collision of two shock waves, two new shock fronts separating single shocked from twice shocked material
evolve that travel away from each other. The situation is equivalent to the reflection of a single shock on an
infinitely rigid wall, which is treated in Ref. [5] for the case of constant γ. Here, the more general case of γ being
itself density dependent, is treated. The final state in the double shocked material is completely determined by the
initial shock strength. Indeed, as the following analysis will show, the effective shock strength z12 = p2/p1 − 1
and hence the second compression ratio x12 = ρ2/ρ1 can be expressed uniquely as functions of the initial shock
strength z01, i.e. the first compression ratio x01. We rewrite the continuity equation Eq. (1a)

u0 − u1 = u1

(
ρ1
ρ0
− 1

)
= u1 (x01 − 1) , (8)

and the conservation of energy Eq. (1c) as

u21 =
p1 − p0
ρ1 − ρ0

ρ0
ρ1

, (9)

such that Eq.(8) becomes

u0 − u1 =

(
p1 − p0
ρ1 − ρ0

ρ0
ρ1

)1/2 (
ρ1
ρ0
− 1

)
=

(
p0
ρ0

z01
(x01 − 1)x01

)1/2

(x01 − 1) .

(10)

Clearly, the same equation can be derived for u1 − u2,

u1 − u2 =

(
p1
ρ1

z12
(x12 − 1)x12

)1/2

(x12 − 1) . (11)

Now, u0 − u1 = v0 − v1 with v0 = U + u0, v1 = U + u1 the velocities in the laboratory system. Making the
approximation that the material is initially at rest v0 = 0, and that the material at the contact interface is also at
rest, v2 = 0, we can combine the ride-hand-sides of Eq.(10) and Eq.(11),

p0
ρ0

(
z01

(x01 − 1)x01

)1/2

(x01 − 1)
2
=
p1
ρ1

(
z12

(x12 − 1)x12

)1/2

(x12 − 1) . (12)

After some manipulation this yields the second shock strength z12 as a function of x12, x01, and z01,

z12 = x12
x01 − 1

x12 − 1

z01
1 + z01

. (13)

Eliminating z12 through x12 (see Eq. (7)), we find

x12
x01 − 1

x12 − 1

z01
1 + z01

= 2
γ2 − x12γ1 γ2−1

γ1−1

x12(γ2 − 1)− γ2 − 1
, (14)

and, after resubstituting x01 as function of z01, finally

x12
x12 − 1

z01
1 + z01

(1 + z01)
γ1+1
γ1−1 − z01 −

γ0+1
γ0−1

1 + z01 +
γ0+1
γ0−1

= 2
γ2 − x12γ1 γ2−1

γ1−1

x12(γ2 − 1)− γ2 − 1
. (15)

This equation can be solved for x12, the formula is given in the appendix.
In the strong shock limit z01 � 1 and x01 = (γ1 + 1) / (γ1 − 1) this reduces to a second order equation for

x12 with one physically meaningful (x12 > 1) solution

x12 =
γ2

γ2 − 1
. (16)
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Also for the second shock front, the compression ratio depends only on the adiabatic index in the final state of
the material. In the perfect gas (γ = 5/3), we have x23 = 2.5, hence the compression after shock collision with
respect to the uncompressed state is ρ2/ρ0 = 4 · 2.5 = 10.

In consequence, by measuring the mass density before and after the shock collision ρ1 and ρ2, i.e. in the single
and in the double shocked material, we can determine the adiabatic index as a function of mass density for up to
10 times compression. Solving Eqs (6) and (16) for γ1 and γ2, we have

γ1 =
ρ1 + ρ0
ρ1 − ρ0

(17a)

γ2 =
ρ1

ρ2 − ρ1
(17b)

3 Measurement of the electron density
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Fig. 1 (Color online) (a) Schematic of experiment showing compression drive beams and x-ray probe beams. (b) Photograph
of the target (c) Rad-hydro simulation of the mass density evolution as function of target depth. The drive beam intensity
profiles for each side (grey and purple) and the x-ray probe pulse (white, scaled by factor 1/60) are overlayed. (d) Raw x-ray
scattering data measured in the HOPG spectrometer, energy dispersion is in horizontal direction. Top to bottom: Calibration
shot, measuring the Zn He-α doublet; scattering data before shock collision showing elastic and Compton scattering; increased
Compton width is observed after after shock collision. Green: spectral lineouts.

In our experiment, performed at the Omega laser at Laboratory for Laser Energetics, we measured the elec-
tron density, temperature, and ionization by time-resolved non-collective X-ray Thomson Scattering (Compton
Scattering). The experimental setup is shown in Fig. 1(a). A 250µm thick high purity beryllium foil (< 0.2%
contaminations) is symmetrically irradiated by a total of 20 laser beams at 351 nm wavelength. Each laser carries
480 J in a 1 ns long pulse, the pulses are staggered in time and focussed on 800µm diameter focal spot, yielding
a flat top intensity profile of 2.4 × 1014 W/cm2 for 3 ns on the target surface, see Fig. 1(c). Use of continuous
phase plates (CPP) ensures a homogeneous intensity profile across the focus. The interaction of the intense laser
with the beryllium target is modelled with the radiation-hydrodynamics code HELIOS [6]. The mass density as
function of target depth and of time is shown in Fig. 1(c). The two shock waves collide after∼ 2.8 ns in the target
center creating ultra-high density states of matter at mass densities of ∼ 13 g/cm3 according to the simulation.
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The conditions in the single shocked and in the double shocked material are probed by intense Zn He-α
radiation (9 keV photon energy). Two sets of laser beams are focussed on a 200µm diameter spot on a Zn
foil, see Fig. 1(a). Pulses of 1 ns duration and 480 J pulse energy yield intensities of 1.5 × 1016 W/cm2, see
Fig. 1(c). Zn He-α radiation penetrates deep into the compressed Be. The scattered radiation (scattering angle
θ = 140◦ ± 10◦) is spectrally dispersed in a highly oriented pyrolytic graphite (HOPG) crystal and detected in
a x-ray framing camera with a time resolution of 0.18 ns. Raw data from before shock collision (t = 2.4 ns)
and immediately after shock collision (t = 2.9 ns) are shown in Fig. 1(d) together with data from a calibration
shot measuring only the Zn He-α radiation at 9 keV. Besides Rayleigh (elastic) scattering from tightly bound
K-shell electrons, Compton scattering produces an additional feature that is red-shifted from the elastic signal by
the Compton shift EC = ~2k2/2me ' 270 eV, where k = 2E0/~c sin θ/2 = (8.4 ± 0.2) Å

−1
is the transfer

wavenumber.
In Fig. 1(d) we also show spectral lineouts from the raw data. Clearly, the Compton width in the post-collision

data is increased with respect to the pre-collision data.
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Fig. 2 (Color online) X-ray scattering spectra measured before shock collision at t = 2.4 ns and after shock collision at
t = 2.9 ns (including a 0.2 vertical offset). Red and green curves represent Thomson scattering simulations for the best-fit
values for electron density of ne = 8.0 × 1023 cm−3 and temperature T = 10 eV and ne = 1.7 × 1024 cm−3, T = 15 eV
before and after shock collision, respectively. Also shown is the x-ray probe (Zn Heα) spectrum and the Zn Kα line that was
measured seperately and which is included in the theoretical calculations . Zf = 2.3 is used in both calculations, thin dashed
lines were calculated with Zf = 2.0.

The spectra are corrected for inhomogeneities in the HOPG reflectivity (“flatfielding”) and a linear background
is subtracted. These spectra are shown in Fig. 2 together with best fit calculations for the dynamical structure
factor. The dynamical structure factor

S(k, ω) = |f(k) + q(k)|2Sii(k, ω) + ZfS
0
ee(k, ω) + ZcSce(k, ω) (18)

describes the differential scattering cross-section in a partially ionized plasma with elastic scattering from tightly
bound electrons and free electrons screening the ion charge (first term in (18)) as well as inelastic scattering
from free electrons (second term) and from bound electrons (third term). In Eq. (18), f(k) and q(k) are the
form factors for bound electrons and for free electrons, respectively, Zf and Zc are the number of free and
core electrons per ion, and Sii, S0

ee, and Sce are the structure factors for ions, free electrons, and core electrons,
respectively. The spectral shape of S(k, ω) depends on the electron density ne, plasma temperature T , and
ionization Zf . Through variation of these parameters, best-fit values are obtained as given in Fig. 2. We find
ne = (8.0 ± 1.0) × 1023 cm−3 and T = (10 ± 2) eV before shock collision. These values are consistent with
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earlier measurements in isochorically heated [7] and single shock-compressed Be [8]. After shock collision, we
find ne = (17.0 ± 2.0) × 1023 cm−3 and T = (15 ± 2) eV. The ionization level was found to be Zf = 2.3
before and after shock collision. Correspondingly, the mass densities before and after the shock collision are
ρ1 = (5.2 ± 0.7) g/cm3 to ρ2 = (11.0 ± 1.3) g/cm3. Lee et al. [8] report Zf = 2.0 for single compressed Be
and ne = 7.5 × 1023 cm−3, hence slightly higher mass densities but still within our error bars. Our data do
not support Zf = 2.0 as shown by the dashed fit curves in Fig. 2, that clearly overestimate the far red wing of
the scattering signal that is dominated by Compton scattering from bound electrons. Higher ionization levels
are not likely because of the large ionization potential of ∼ 100 eV for Be2+ ions. This value already includes
depletion of the ionization potential of ∼ 60 eV due to the dense plasma environment as estimated through the
Stewart-Pyatt model [9].

4 Results for the adiabatic index
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Fig. 3 (Color online) Adiabatic index γ for compressed Be as measured by X-ray Thomson Scattering (Red points). The
blue diamond is calculated from compression data by Lee et al. (Ref. [8]). Squares and triangles at low compression are
measurements of the sound speed γ by Neal (Ref. [10]). Analytical expressions for γ used in the SESAME EoS (solid curve)
and the ANEOS model (dashed curve) and a linear scaling model for the heat capacity ratio cp/cv are shown using the lowest
compression data by Neal as reference value, γ0 = 2.41.

Using Eq. (17), we obtain γ1 = 2.1+0.3
−0.2 at ρ1 = (5.2 ± 0.7) g/cm3 and γ2 = 1.9+0.6

−0.3 at ρ2 = (11.0 ±
1.3) g/cm3 for the material after the collision. These results are shown in Fig. 3. The horizontal error bars on γ2
result from the dependence on ρ1 and ρ2. Also shown are measurements of the sound speed gamma γ1 for Be at
low compression ratios by Neal [10]. Clearly, the sound speed gamma (Neal) and our data for the shock gamma
differ at these high densities. Furthermore, differences in γ can be due to different temperatures; Neal does not
state a temperature for his measurements. The continuous curves represent different models for γ as a function
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of mass density [11]. These models are

γ(ρ) = γ(ρ0)
ρ0
ρ

+
5

3

(
1− ρ0

ρ

)
, (19a)

γ(ρ) = γ(ρ0)
ρ0
ρ

+
5

3

(
1− 7

5

ρ0
ρ

+
2

5

(
ρ0
ρ

)2
)
, (19b)

γ(ρ) = 1 + (γ(ρ0)− 1)
ρ0
ρ
. (19c)

The first model (19a) is implemented in the SESAME equation of state [12], the second (19b) is used in the
ANEOS model [13], and the third can be used to model the density dependence of the heat capacity ratio cp/cv .
Here, ρ0 is a reference density, taken from the Neal data at lowest compression.

Our data are consistent with the linear model of Eq. (19a), whereas the Neal data for the sound speed γ support
the quadratic model of Eq. (19b) that converges faster towards the high density limit γ(ρ→∞) = 5/3. Clearly,
our data show the departure of the shock γ from the ratio of the heat capacities. At high densities our data seem
to converge to the limit 5/3, whereas the heat capacity ratio goes to cp/cv = 1.

In our analysis, we have assumed that effects due to x-ray and hot electron preheat of the target can be
neglected. For the present laser parameters we estimated the hot electron temperature to remain below 3 keV
using established models [14]. These hot electrons penetrate only the first 9µm into the target and hence do not
heat the central region of strong compression. X-ray preheat remains below 0.7 eV as estimated by calculating
the total bremsstrahlung emission from the 2− 3 keV hot coronal plasma and absorption in the compressed Be.

5 Effect of the density dependence of γ on the compressibility
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Fig. 4 (Color online) Compression as function of shock strength assuming various adiabatic indices: Black (solid) curve:
liner SESAME model starting from γ(ρ = ρ0) = 2.4; green (dash-dotted) curve: constant γ = γ(ρ0) = 2.4; orange (dotted)
curve: perfect gas heat capacity ratio γ = cp/cv = 5/3.

Fig. 4 shows the shock compression ratio ρ/ρ0 for a single planar shock as a function of the shock strength
z assuming three different shock gammas: The black curve was calculated using the linear SESAME model
Eq. (19a) as plotted in Fig. 3. It assumes the lowest compression point measured by Neal as the reference point
γ0 = 2.41 and agrees with our measured data within the error bars. The green (dash-dotted) curve was calculated
assuming a constant value for γ = γ0 = 2.41 and the orange (dotted) curve takes the heat capacity ratio for
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the perfect gas, γ = cp/cv = 5/3. The latter curve converges to the well known strong shock limit ρ/ρ0 → 4,
whereas the models with higher γ remain below this limit. The linear scaling model predicts a limiting value
of ρ/ρ0 ' 3.2 at large z. Although the shock gamma within this model eventually reaches γ = 5/3, the
maximum compression, being the solution of the equation ρ/ρ0 = f(z, γ(ρ/ρ0)) is always smaller than the
limiting value. The limit assumed by the green curve is given by ρmax/ρ0 = (γ0 + 1)/(γ0 − 1) = 2.41.
These results show that the density dependence of the adiabatic index is crucial for the maximum single shock
compression. Whereas a constant γ fixed at the value for solid Be predicts low compressibility, the often used heat
capacity ratio overestimates the final compression. Our experimental results for γ support a moderate variation
of γ with increasing density and the corresponding maximum compression is between the two aforementioned
limits of constant γ.

6 Summary and Outlook

In summary, we have derived the shock wave kinetics for colliding shock waves for the general case that the
shock gamma depends itself on density. The results were applied to infer γ for Be at two densities measured by
X-Ray Thomson Scattering before and after the shock collision. The measured compression ratios of 2.8 and 5.9
yielded γ1 = 2.1, and γ2 = 1.9, respectively. These results are in good agreement with a linear scaling model
that is implemented in the generator of the SESAME equation of state tables. Assuming this model to calculate
γ(ρ) for arbitrary densities, we obtain the compression ratio as a function of the shock strength. In the strong
shock limit the density dependence of γ significantly reduces the maximum single shock compressibility. In our
case, ρmax/ρ0 = 3.2 instead of 4 as in the perfect gas model. On the other hand, taking γ = γ0 fixed at the value
for solid Be underestimates the maximum compression by a factor of ∼ 0.8.

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 and supported by LDRD grant 10-ER-050. C.F. acknowledges
support by the Alexander von Humboldt-Foundation.

References

[1] S. H. Glenzer and R. Redmer, Rev. Mod. Phys. 81(4), 1625–1663 (2009).
[2] D. C. Wilson, Phys. Plasma 42(5), 1952 (1998).
[3] G. P. Horedt, Polytropes - Applications in Astrophysics and Related Fields (Kluwer Academic, Dordrecht, 2004).
[4] Y. Zel’Dovich and Y. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena (Dover Pubns,

Mineola, New York, 2002).
[5] H. Motz, The Physics of Laser Fusion (Academic Press, London, 1979).
[6] J. MacFarlane, I. Golovkin, and P. Woodruff, J. Quant. Spectrosc. Radiat. Transfer 99(1-3), 381–397 (2006).
[7] S. H. Glenzer, O. L. Landen, P. Neumayer, R. W. Lee, K. Widmann, S. W. Pollaine, R. J. Wallace, G. Gregori, A. Höll,
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A Second compression ratio as function of initial shock strength

Solving Eq. (14) for x12 yields

x12 =

{
(γ0 − 1)(γ1(3γ2 − 1) + 2)z01

2 + (2γ2 − γ1(5γ2 + 1) + γ0(−4γ2 + γ1(9γ2 − 3) + 2))z01

+ 2γ0(γ1(3γ2 − 1)− 2γ2)

+

[(
− (γ0 − 1)(γ1(3γ2 − 1) + 2)z01

2 + (5γ2γ1 + γ1 − 2γ2 + γ0(γ1(3− 9γ2) + 4γ2 − 2))z01

+ 2γ0(−3γ2γ1 + γ1 + 2γ2)
)2 − 8(z01 + 1)(z01(γ0 − 1) + 2γ0)(γ1 − 1)(

(γ0 − 1)(γ1 + 2)z01
2 + 2γ0z01 + 3(γ0 − 1)γ1z01 + 2γ0γ1

)
(γ2 − 1)γ2

]1/2}
{
2
(
(γ0 − 1)(γ1 + 2)z01

2 + 2γ0z01 + 3(γ0 − 1)γ1z01 + 2γ0γ1
)
(γ2 − 1)

}−1

. (20)
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